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Theoretical Description of the Graphite, Diamond, 
and Liquid Phases of Carbon 1 

M. van Thiel  2 and F. H. Ree 2 

A three-phase equation-of-state model, to be used in high-pressure high-density 
simulations of systems containing carbon, is described for the system graphite- 
diamond-liquid. The solid phases are represented by cold lattice and thermal 
energy terms. Simple additivity of the energy terms is assumed and the cold 
curve is a modified Birch form. Liquid states for diamond and graphite are 
obtained by a previously described scaling model. The actual Gibbs free energy 
of the liquid state uses the free energy of these liquids in a mixture model that 
includes an entropy of mixing and a pressure-dependent strain term. It is noted 
that the thermal expansion coefficient and the Griineisen gamma increase faster 
above 3000 K than the usual approximation for the volume dependence would 
predict. The result is a phase diagram that fits all available data. 

KEY WORDS: carbon phases; diamond; electronic effects; graphite; melting; 
high pressure; high temperature. 

1. I N T R O D U C T I O N  

Carbon is both an excellent structural material and pervasive in nature. In 
high-temperature, high-pressure mixtures containing carbon, solid or liquid 
carbon can settle out as a separate phase [1] in an oxygen-deficient 
environment. The separate phase can be graphite, diamond, or liquid. An 
accurate three-phase model is therefore required to model such hot 
chemical equilibrium mixtures. 

The status of the work on carbon has been reviewed recently [2, 3]. 
The graphite~liamond phase line is now well established to 3000 K and 
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ends in a graphite-diamond-liquid triple point [4]. The uncertainty of this 
triple point temperature, 4000 to 4800 K, is due to the uncertainty of the 
low-pressure (about 0.01 GPa) graphite-liquid-gas triple point, to which it 
is connected by a distinctly curved melting line. The diamond melting line 
above the upper triple point was shown to be positive [5]. 

The electrical conductivity (or reflectivity) of liquid carbon depends on 
pressure [2, 4]. From the low-pressure triple point to about 0.5 GPa, the 
conductivity of the liquid appears to be similar to the conductivity of the 
solid or less conductive. But some disagreement exists on that point [2]. 
The liquid is generally more conductive than the solid at higher pressures. 
Aside from the conflict at low pressure, the data are consistent with a 
poorly conducting liquid below 0.1 GPa and an increasing conductivity 
with pressure. 

2. T H E O R Y  

2.1. Sol id  

The solid state of the diamond and graphite phases is described 
assuming additivity of lattice and thermal terms: 

E(T, V)= Ek(V)+ AE(V, T)+0.5 ge T2 (1) 

G(T, V)=E(T, V)-TS(T,  V)-geT2-.b P(T, V)V (2) 

Here E is the internal energy and G the Gibbs free energy. T and V are 
temperature and volume, and the pressure (P) is the isentropic derivative 
of - E  with respect to V. The entropy (S) and thermal energy (AE) of the 
nuclear motions are evaluated in the Einstein approximation. The elec- 
tronic corrections to the energy and Gibbs free energy, in their simple 
asymptotic forms, are adequate for the pressure (0.1- to 800-GPa) and 
temperature (0.05- to 5-eV) ranges considered. 

The energy at 0 K, Ek(V), is defined by a modified second-order Birch 
expansion [6] which is normalized to the heat of formation in the standard 
state (H ~ by its value (EoK) at V= Vo. A second correction ((~8298) is used 
to correct the entropy at 298 K to the standard-state entropy. The 
modification of the Birch form is mandated by the high compressibility of 
the graphite lattice along the c axis and the strong bonding in the a, b 
plane, a condition for which no simple equation of state has been designed. 
For expanded states the Birch form is modified by 

--OEk/~( Vo/V) = emRcn [(Vo/V) 2 + ( V/Vo)2]/2 (3) 
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While this correction is important for graphite, it plays no role over the 
range of densities of significance for diamond. 

We can express Eq. (1) as 

P(V, T)= -[OE/OV]s=Po(V)+ PT,,(V, T)+ PT, e(T) (4) 

We use the Griineisen approximation and write the last two terms as 

Pr.t(V, T)= [?z(V)/V] AE(V, T) (5a) 

Pr, e( V, T) = (?e/2V) ge T2 (5b) 

The above approximation is synonymous with the assumption that all 
vibrational modes of the system have the same volume dependence and the 
volume dependence of the Einstein O is, therefore, 8 In O/0 In V= -Yr. Its 
value at V= V0 is defined by the experimental heat capacity. 

The solid is bounded at high T by the melting line. The Lindemann 
law in its usual harmonic approximation, 0 2 V2m/3/Tm = constant, leads to 
the melting law [7], 

8 In TM/8 In V= 2 = 2?t-- 2/3 (6) 

At this point the melting line is independent of the electronic proper- 
ties. This will change as we develop the liquid properties of the graphite- 
diamond system below. 

As discussed below, the expansion coefficient appears to have a larger 
curvature above 3000 K. The following expression can describe fairly rapid 
changes in curvature: 

7I(V)/V=-7o/Vo[1 q- ~ly(1 +tanh Z1) + ~2~(1 +tanh Z2)] (7a) 

where 

Zi= +_(V- Vi~)/bVi~, with i=  1 or 2 (7b) 

2.2. Liquid 

Experimental data and theoretical considerations indicated that the 
atomic heat capacity of the liquid, CV, L, is related to the solid heat 
capacity, Cv, by 

Cv, L : C v - ~  R (1 + at) (8) 

with c~ = 0.1. Grover [7] has shown that with this rule the liquid equation 
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of state can be determined from the properties of the solid and the melting 
line by a thermodynamically consistent scaling procedure. We have applied 
this formalism to define graphitic and diamond-like liquid phases. 

The liquid state is now defined by two Gibbs free energies, one for 
diamond and another for graphite; these produce a first-order transition in 
the liquid. There is no evidence for such a transition in simple liquids. 
Furthermore, fluctuations in interatomic distance in the liquid phase can 
readily lead to diamond-like tetrahedral sites with a probability that 
increases with compression. This view is supported by structural analysis of 
flash-frozen droplets [8], and the low activation energy for diamond 
formation of rhombohedral graphite [9]. We therefore treat the liquid, as 
in a previous more approximate analysis [10], as a solution of two liquids. 
Solution theory [11 ] gives the Gibbs free energy 

GL( V, T) = xG d, L( V, T) + (1 - x) Gg, L( V, T) 

+ R T [ x l n x + ( 1 - x ) l n ( 1 - x ) + A ( P ) x ( 1 - x ) ]  (9) 

where subscripts L, d, and g refer to liquid, diamond, and graphite, respec- 
tively. The logarithmic terms are the entropy of mixing and A is the strain 
energy. This term is included because there is a boundary of molecules 
between graphitic and diamond-like sites that accommodates the strain 
caused by the difference in size. Choice of a constant A yields reasonable 
results. The results are improved by a pressure-dependent expression: 

A(P) = Ao/[-1 + (P/Po) 15 ] (10) 

3. ANALYSIS AND RESULTS 

The high-temperature heat capacity of graphite and diamond are 
easily reproduced by Einstein functions. Deviations near and below room 
temperature can be corrected. The reference energy (EoK) in the Birch form 
of Ek(V), Eq. (1), and the entropy correction (•$298) have been discussed 
above. With these constants, the computed graphite~liamond transition 
agrees with experiment [-2]. 

The bulk modulus of diamond can be determined from existing shock- 
wave and ultrasonic data, but a good guide is provided by first-principles 
calculations. In Fig. la several sources of data are compared to our model 
Hugoniot and 0 K isotherm. The data analysis of Pavlovski [12] ignored 
strength effects. But Kondo and Ahrens [ 13] measured an elastic precursor 
of about 60 GPa. The Pavlovski data were recalculated with this precursor 
pressure. The limits of uncertainty in the measured shock and particle 
velocities yield a number of points per datum. These are all plotted in 
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Fig. 1. (a) Diamond. 0K isotherms: ( ) 
McMahan's [15] LMTO calculations; (---)  this 
model. Hugoniots: ( . . . .  ) this model; (+) Pavlovski 
[12]; (�9 McQueen et al. [14]; (~) Kondo and 
Ahrens [13]. (b) Graphite. OK isotherms: (A) 
Fahy's rhobohedral graphite [21]; ( - - )  this 
model. Hugoniots: ( ) this model; (�9 pyrolytic; 
( � 9  pressed powder. 

Fig. la  to offer a measure of the uncertainty. Several data points obtained 
on pressed diamond powder with a graphite binder [14] yield a higher 
density. Since the shock develops most of the temperature in the binder, the 
stress field in this sample should be considerably more hydrostatic. This is 
consistent with the higher shock densities of the powder data and their 
close agreement with the results from L M T O  calculations [ 15]. The selec- 
ted bulk modulus, B o, and its pressure derivative, Bo, produce close 

840/10/1-16 
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agreement with the theoretical calculations. The bulk modulus also agrees 
with existing ultrasonic data within experimental uncertainty. 

The weak binding between the a, b planes makes the compressibility of 
graphite near P = 0 very nonlinear. As noted above, the second-order Birch 
equation requires a correction in expansion. Ultrasonic data up to 40 MPa 
[16] show that OBo/OP=33, while static compression work El7] up to 
18 GPa suggests a value of 7 to 9. The shock-wave data of pyrolytic 
graphite [14] to 40 GPa imply a value of 7.2. The pyrolytic shock data 
have slightly high pressures up to 18 GPa, which could be a consequence of 
sample porosity. Strength effects have been ignored in matching the 
shocked pyrolytic data near 40 GPa. This is supported by the near-equality 
of the one-dimensional and bulk compression moduli obtained from low- 
pressure elastic constants. Extrapolation of this equality to high pressure 
may not be justified. 

The shock data of pressed graphite powders have higher densities 
above 10 GPa than the data of pyrolytic graphite. However, shock com- 
pression of these powders can produce rather high transient temperature 
spikes (on a micron scale) between the grains, high enough to produce par- 
tial transformation to diamond. Calculations also show that in the rhom- 
bohedral form the graphite in-plane bonds bend, thereby allowing stronger 
bonding between the planes [-9]. This structure is easily formed in 
polycrystalline samples because of the random orientation of the particles 
relative to the principal stress direction. Tetrahedral structures with a 
higher density are therefore more likely in such randomly oriented 
polycrystalline samples. Such samples are therefore not a useful measure of 
the compressibility of crystalline graphite. It may also be noted at this 
point that the value of B~ for graphite in Table I, within parentheses, is 
appropriate for expanded states where a large value does not give 
meaningful results in the Birch form. 

The thermal effects may be estimated from the expansion coefficient 
and the selected moduli. For diamond the expansion coefficient is known 
only to 1200 K and yields a value of 7o = 0.86. The best estimate of its value 
at high pressure comes from data above 400 GPa [18]. These data suggest 
a 7o of 1.15. We have adopted the latter value since our interest is in the 
high pressures where diamond is stable. 

Expansion data for graphite extend to 3000 K, nearly three times OE. 
Combined with the low modulus of graphite, this yields, a small value of 7 
(=0.35), and resulting pressure differences between the OK curve in 
Fig. lb and the Hugoniot are, therefore, also small. The unusual form for 7 
in Eq. (7) is dictated by the value required to explain the positive slope of 
the graphite melting line at low pressures [4]. This implies a rapidly 
increasing expansion coefficient between 3000 K and the melting point. The 
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Table I. Input Constants for the Model a 
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EoK/R (K) Vo ~e 7e, L 

Graphite -- 53.3015 0.35 0.24 0.24 
Diamond 190.2730 1.15 1.10 1.10 

0 E (K) ge/R (K -1) ge.L/R (K t) TM, o (K) 

Graphite 1280. 1.156 x 10 6 1,156 x 10 .6 6000 
Diamond 1411. 0.0 6.038 x 10-5 6600 

ASM/R B o (Mbar) B'o (~$298/R 

Graphite 2.70 0.511 7.2 (5.0) 6 0.464 
Diamond 1.15 4.397 3.65 0.1331 

~1'/ 62~, ~VI~ (cm 3 .g-l)  6V2~ (cm 3 .g-l)  

Graphite 0.10 3.0 0,040 0.065 
Diamond 0.0 0.0 1.0 1.0 

Vl~ V2~ A0 P0 (GPa) 

Graphite 0.500 0.22 
Diamond 0.0 0.0 
Liquid 2.2 20. 

a R = 82.05586 atm �9 cm 3 . mol 1 = 6.92215 x 10 6 Mbar �9 cm 3 . g- ~, 
b The value in parentheses is used in expansion. 

high rate of graphi t izat ion [19]  and the possibility of forming carbynes 
[20]  above 2 6 0 0 K  imply that  the in-plane lattice mot ions  are quite 
anha rmon ic  in this temperature  range. 

The electronic properties of graphite are reflected in measurements  of 
the conduct ivi ty  and  low-temperature  heat capacity. The measurements  of 

Bundy [4 ]  show a decrease in conduct ivi ty  with temperature,  consistent  
with the semimetal  band  structure of the static lattice, and  an increase on 
liquefaction. As noted  above, the increase of the conduct ivi ty  on melt ing 
occurs only above 0.4 GPa.  For  the range of pressures and  temperatures  of 
interest here, we assume that  the band  structure and  electronic heat 
capacity coefficient for solid graphite and  the l iquid graphite componen t  
are constant .  Low-tempera ture  heat capacity measurements  yield the 
electronic value listed in Table  I. 

The conduct ivi ty  of d i amond  is structure dependent.  The norma l  cubic 
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diamond structure is easily transformed to hexagonal diamond in a shock 
wave. While the former remains an insulator at high pressure, the 
hexagonal form has a band gap, which decreases to about 1.5 eV at 
300 GPa [21 ]. Bundy had noticed that doped liquid diamond is more con- 
ductive than the solid [4]. For most dynamic experiments that produce a 
liquid state, the temperatures would be sufficiently high to yield a conduc- 
tor of disordered hexagonal diamond. Calculations using the INFERNO 
(atom in a Wigner-Seitz sphere) model [22] indicate that, for equation-of- 
state purposes, the electronic heat capacity can be represented by ge T and 
7e by a constant. In this model we have used the electronic properties 
derived from INFERNO for the liquid and assumed only bound electrons 
in the generally cooler solid. 

The phase diagram in Fig. 2 fits the known information within 
experimental uncertainty. The agreement with the graphite-diamond trans- 
formation data of Berman and Simon [23] and Bundy et al. [24] has been 
reported previously [25]. The principal improvement obtained in this 
work is in the melting properties. Near 1 GPa our mixture model predicts 
about 90 % graphitic liquid. The amount of diamond-like liquid increases 
only slowly with pressure up to 3 GPa, then more rapidly, and tends to 
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Fig. 2. Carbon phase diagram: ( x )  Bundy's experimental melting 
line [4]; ( - - - )  Berman and Simon [23]; ( ) this model; ( . . . .  ) 
graphite melting line extension, this model; ( + )  solid Hugoniot 
points, Shaner et al. [5]. 
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level off at about 80 % just above the triple point. The slope of the melting 
line above 5 GPa is, therefore, a function of the diamond fraction and A in 
Eq. (10). A pressure-dependent A, using the constants in Table I, lowers 
dPu/dT by about a factor of 2 over that obtained with a constant value of 
A. The small negative slope, therefore, results both from the increasing 
tetrahedral character of the liquid and from the decreasing strain energy 
with pressure. 

The diamond melting line in this work has a positive slope, which is 
consistent with the high-pressure sound-speed measurements of Shaner 
et al. [5]. These measurements determined the Poisson ratio of the 
shocked material and showed that all points are in the solid phase. The 
model presented here places the melting line close to the highest-pressure 
point in Fig. 2. The extension of the graphite melting line and, to a lesser 
extent, the diamond melting line depends on the compressibility of the 
unstable graphite phase. This compressibility is constrained by experiment 
only up to 40 GPa. Extrapolation of the melting line is often used as a 
criterion of instability. Our extrapolation would predict graphite to be 
stable up to 80 GPa, which is also predicted by local density functional 
theory [-9] of rhombohedral graphite. 

4. CONCLUSION 

We have combined a simple description for the high-pressure and 
-temperature properties of solid graphite and diamond with a description 
of the liquid phase. The observed curvature of the graphite melting line 
requires a new function for the Griineisen 7 and a mixture model for the 
liquid. The positive slope of the diamond melting line also is consistent 
with the available experimental data. If we consider the extrapolation of 
the grahite melting line as the curve bounding its range of stability, we note 
agreement with the theoretical stability range of rhombohedral graphite. 
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